■スポンサードリンク
天地明察
新規レビューを書く⇒みなさんの感想をお待ちしております!!
天地明察の評価:
書評・レビュー点数毎のグラフです | 平均点4.20pt |
■スポンサードリンク
Amazonサイトに投稿されている書評・レビュー一覧です
※以下のAmazon書評・レビューにはネタバレが含まれる場合があります。
未読の方はご注意ください
全49件 41~49 3/3ページ
| ||||
| ||||
---|---|---|---|---|
小説の書き方は自由である。 だが、歴史小説を書くときには、一定のルールがあると思われる。 骨は事実である。ただし事実だけでは小説にならない。 わからないところは作者の想像で埋める。 その想像が小説としての骨になる。 まず前者の骨に数々の誤謬があることは、ほかのレビュワーの指摘にあるとおりである。 後者の骨については、あまりにも現代的な解釈が施されすぎていると僕には思われる。 この時代の人が本当にそう行動したであろうか。 ただし、この作家の解釈については作家の自由であるから、好き嫌いの判断になるわけで、 僕の好みではないというだけである。 僕の好みではないのはもうひとつ、笑いのとり方が稚拙である点である。 「ほんとうにおもしろいこと」と「おもしろそうなこと」は違う。 作者は「おもしろそうなこと」を、「笑え」という命令記号とともに 書いているので少しも笑えないのである。 “「えん」という名を炎と言う字とは言えなかった”と書くが、 笑えない。 | ||||
| ||||
|
| ||||
| ||||
---|---|---|---|---|
読みやすい、キャラが立っている、そしてストーリーに起伏があっておもしろい。 おそらく、今は、歴史小説の時代なのだろう。 「のぼうの城」以来、歴史小説の敷居が低くなって、若者にも読みやすいいわゆる「ライト歴史小説」が流行し、様々なジャンルの書き手が歴史小説に参入している。 この作品もその一つであるが、本屋大賞にも選ばれるだけあって、侮れない出来栄えである。 しかし、他のレビュアーも指摘しているように、残念なことに、暦学、数学、時代考証等の点で、専門家でなくても気がつくような理解不足、誤りが多々見受けられる。 暦学・天文学に関しては、既に他の方々が詳しく指摘しているので、ここでは、算術問題について書くことにする。 小説の中で、春海は、3問の算術問題を解答又は出題しているが、そのすべてについて問題がある。 【1問目】直角三角形に内接する2円の直径を問う問題 答えは、30/7で合っている。また、春海の解き方は、2ab÷(a+b+c)×c÷(a+b)となっている。 これは、先ず直角三角形の内接円の直径を出した後に、2つの直角三角形を組み合わせ、相似を用いて解いたものだと思われる。中学数学を習った現代の人なら、方程式を立てて解くのが一般的であり、春海の説き方は、普通、上記の式だけでは分からない。解説があってしかるべきところであり、式の順序も少しおかしい。おそらく、筆者は、この問題の解き方をよく理解していないのであろう。 【2問目】大小の円の蝕交している幅の長さを問う問題 この問題は、出題ミスであり、解なしとなる設定である。 しかし、他の算術家が誤問であるが面白いと評価するのであるから、それなりのミスでなければならないはずである。にもかかわらず、2つの正方形の辺の比は、一方が他方の対角線となることから√2:1となることが一見して明らかなのに30:7としていたり、小円の半径の方が大円の半径より大きくなってしまうなど、一流の算術家のミスとしては、お粗末すぎる。 その上、想定していた正解が(√7+√23)÷4だったり、辺の比の矛盾を無理数なのに奇数と偶数で説明しようとするなど、もう意味が分からず滅茶苦茶である。 【3問目】15個の円の内の一つの円の円周の長さを求める問題 この問題は、小説に書かれている条件だけでは解けない。15個の円の大きさが何らかの数列になっていると考えれば、解ける可能性もあるが、等差数列や等比数列で考えても矛盾が出てしまう。また、もっと複雑な数列を考えても、おそらく小説で正解としているような答えにはならない。 この問題は、実在する和算の問題の数値を筆者が変えて作った問題だそうだが、何のために数値を変えたのか意味が分からない。 筆者のみならず、編集者や出版社の人間にも、こうした誤りを指摘する人はいなかったのだろうか。いくら出版関係に文系が多いといっても、中学1、2年レベルの数学を理解していれば分かるはず。 小説自体は、おもしろかったので、文庫で再度出版する際には、是非、専門家のアドバイスを聞いて、問題を修正して欲しい。 | ||||
| ||||
|
| ||||
| ||||
---|---|---|---|---|
なので、知識的な部分は深く考えず(それもどうかと思うけれど)、人間関係重視で読みました。 中でも好きだったのが春海&えん&成瀬のシーンで、 なんだかほっこりした気分で読んでいました。 また、関さんとの初対面のシーンは驚きました。 勝手に作り上げていた人物像とはすこし違っていたので、 そういう感じの人なのか〜と。 ラストは…ちょっと見送りすぎじゃないの!? え、一緒にとかそんなうまいこと…という印象でした。 | ||||
| ||||
|
| ||||
| ||||
---|---|---|---|---|
「マルドゥク〜」でSF大賞を受賞した冲方 丁さんが本屋大賞を受賞したと聞き、手にしました。これだけの長編を一気に読ませ、なおかつ一般にあまりなじみのない分野の話を興味深いものに仕上げている力量はさすがだなと思いました。以前、別の本で読んだこともあるのですが、やはり大きく時代が移り変わる時だからなのか、多くの異才が排出されていた時代だったのだなあと改めて思いました。和算の関孝和や囲碁の本因坊道策、といった不出世の天才たち、稀代の名君、保科正之、水戸光圀……しかし、そういう人たちの凄みが残念ながら伝わってこなかったように思います。例えば関孝和や道策の天才ゆえの孤独や保科正之の為政者としての影の部分(人を殺したことがある、ということが彼の為政者としての姿勢を決めている以上、その部分をもっと書いてもよかったのでは、と思ってしまいました)……そういったところがもっと書き込まれていたらとか。晴海の成長を書いてほしかったな、とか(でも建部昌明、伊藤重孝のように子供のような無邪気さで学問を探求していく姿やさりげなく書かれている安藤有益の謙虚な姿勢は読んでいてすがすがしい気持ちになれました)。そうは言っても書き込みがされていたら、今ある話とはまた違ったものになっていたとも思います。あと、角川の帯の文句。一応歴史ものですし、「プロジェクト」「ミッション」はかんべんしてほしかったなあ、これも今の時代だからなんでしょうか。それからレビューの中に「地動説を知らなかったのでは?」という話もありましたが、うる覚えの記憶でしかありませんが、織田信長が宣教師たちから話を聞いた中で地球が球体であることと一緒に地動説を学んだように……?詳しくはないので、私の勘違いだったら申し訳ないのですが。 | ||||
| ||||
|
| ||||
| ||||
---|---|---|---|---|
各賞受賞で作者はテレビでもとりあげられ、 「巨星現る」みたいな扱いになっていますが、 そういった他者の評価は割り引いて読んだ方が、 きちんとこの本と向き合えた、そういう感想になってしまいました。 キャラクターもいいし、着眼点もいい。淡々とした語り口もいい。 しかし、肝心の改暦決定時の盛り上がりには欠ける構成となっており、 そこまでは心を熱くさせる人物や展開を見せてきただけに、 腑に落ちない出来になっていると思います。読後感がすっきりしません。 構成については史実が元であるため、動かしようのないものごとは あったかもしれませんが、そこは筆を尽くして描写することで、 もっとなんとかなったのではないでしょうか。 本作のメインイベントは改暦のはずですが、 盛り上がりは保科正之公の逝去までで終わってしまっています。 マルドゥックと比較するのは作品の内容も作風も異なるのでどうかとは思いましたが、 同じ作者の作品として、こうまで濃密さが異なるというのも解せぬもの。 その意味では、本作も「読みやすいく手に取りやすい」という以上に、 もっと濃密で面白い作品になれたのではないかという残念さが勝りました。 よって★は三つとさせていただきます。 | ||||
| ||||
|
| ||||
| ||||
---|---|---|---|---|
人物の選定がおもしろい時代小説で、題名もストーリー展開もうまい。ただ、読み終わる前に「天文学・暦学に関する記述に問題あり」との指摘があると知ってしまったので、それを検証するような読み方になってしまった。 残念ながら、「天文学・暦学に関する記述に問題がある」という指摘は首肯せざるを得ないのではないか? 「誤認、受賞」に関連して、横山秀夫の「半落ち」(と直木賞)を思い出したが、物語の骨格といえる部分が問題視されている点ではこっちの方が致命的にも思える(半落ちは結局問題なかったしね)。 --- と思ってたら、直木賞候補になったのね。「半落ち」がないなら、これもないと思うよ(説明がつかん)。 | ||||
| ||||
|
| ||||
| ||||
---|---|---|---|---|
同書123ページ他に1684年「貞享暦」改暦当時、天文家の間で地動説は常識であったとあるが、日本での地動説紹介は1774年長崎オランダ通詞本木了永『天地二球用法』を嚆矢とし、地動説は知られてはいない。ましてやケプラーの楕円法則などはまったく紹介されてはおらず暦法理解に重大な過ちを犯している。中国暦法は渾天儀を利用した天文観測技術と古代からの天文事象の歴史記録の積み重ねによるもので、天文理解については渾天説・蓋天説などに基づく「天円地方」概念を基本としており地球の球体たることすら理解されてはいなかった。我が国での最初の西洋暦法の導入は1798年高橋至時らによる「寛政暦」改暦が最初であり、天文家の間ので地動説理解はこれ以降のこととなる。参考図書としては近著では、海野一隆『日本人の大地像』などを参照されたい。 | ||||
| ||||
|
| ||||
| ||||
---|---|---|---|---|
物語はおもしろかったですが、天文学・暦学に関する記述に問題があります。 1、渋川春海は地動説をうけいれていたのか? 123ページに、「中国(清国)でも地動説に疑問の余地はなく、当然、日本でも天文観測に特に長けた一部の者たちにとっては常識だった。」とありますが、ウィキペディアの「地動説」の項の「地動説と日本」のところには、「日本で通詞の本木良永が『和蘭地球図説』と『天地二球用法』の中で日本で最初にコペルニクスの地動説を紹介した。」とあり、この本木良永という人は1735年生まれで、『天地二球用法』は1774年の出版であるので、とても渋川春海(1639〜1715)が地動説を受け入れていたとは考え られません。 2、著者は緯度と経度をとりちがえているのではないか? 442ページに、「授時暦が作られた中国の緯度と、日本の緯度、その差が、術理の根本的な誤差をもたらしていたことを実証したのである。北極星による緯度の算出、その”里差”の検証、さらには漢訳洋書という新たな視点によって、その誤謬が確実なものとなった。」とありますが、貞享暦は授時暦をベースに日本と中国の経度の差を補正して作られたもので、緯度の差を補正して作られたものではないと思います。 3、渋川春海はケプラーの第1、第2法則を発見したのか? 442ページから443ページにかけて、あたかも渋川春海がケプラーの第1、第2法則を発見したかのように書かれていますが、ケプラーの法則は地動説を前提としており、春海はおそらく天動説に依っていたので、ここの記述はおかしいと思います。 黄道上を太陽が動く速さが一定ではなく、もっとも速くなる時期や遅くなる時期が授時暦が作られたころ(1280年頃)と春海の時代(1680年頃)ではずれていることは、春海も理解していたと思いますが、それがどうしてそうなるのかは分からなかったのではないかと思います。 4、著者は「宣明暦」や「貞享暦」等の二十四節気の配置法が平気法であることを知らないのではないか? 442ページに「近日点通過のとき、地球は最も速く動く。逆に遠日点通過のときには、最も遅く動いているのである。これは、たとえば秋分から春分までがおよそ百七十九日弱なのに対し、春分から秋分までは、およそ百八十六日余であることから、実は既に明らかになっていることでもあった」とありますが、「宣明暦」も「授時暦」も「大統暦」も「貞享暦」も平気法(恒気法、時間分割法)で二十四節気を決めているので、春分から秋分、秋分から春分の時間間隔は同じです。日本で実施された暦法で442ページの説明がな りたつのは、二十四節気を定気法(空間分割法)で決めるようになった「天保暦」(1844〜1872実施)だけです(今のいわゆる旧暦は「天保暦」を元にしているのでこの説明はなりたちます)。 | ||||
| ||||
|
| ||||
| ||||
---|---|---|---|---|
中盤までの全国行脚はとてもよかったのですが、下手に史実を扱ったせいかひねりがありませんでした。 肩透かしを食らった感じです。 マルドゥックシリーズとは比べるべくもない出来で残念です。 | ||||
| ||||
|
■スポンサードリンク
|
|
新規レビューを書く⇒みなさんの感想をお待ちしております!!